Method Validation

Lebah Lugalia
QA/QC Lab Coordinator
UNC Project
Lilongwe, Malawi

Method Validation

- What is method validation?
- Why is it important to validate a method?
- What regulations and guidelines apply?
- What assays must be validated?
- What experiments are involved?
- What criteria is available for method acceptance?

History of Validation

The concept originated in analytical chemistry to verify that a method provided an accurate and representative value for the sample employed under the conditions used.

Method Validation – What is it?

- VALIDATION = ERROR ASSESSMENT
- Estimation of how much error might be present in a test result produced by a method in your laboratory.

Method Validation – Why is it important?

- You want to validate the manufacturer's claims for their method performance characteristics.
- You want to ensure that the amount of error of the method won't affect the interpretation of the test result and compromise patient care.

Method Validation- Why is it necessary to validate a new method

- Method performance is affected by many factors:
 - Changes in manufacturing from the production of prototypes to final field instruments
 - Effect of shipment and storage
 - Local climate conditions in your lab e.g. temp, humidity
 - Quality of water
 - Stability of electrical power
 - Skills of the operators.

Method Validation: Why is it necessary to validate a new method

Method validations provides assurance that a new method, with whatever changes that may have occurred, still performs acceptably under the conditions of use in your laboratory.

What are the regulations?

- On Jan 24, 2003 the Centers for Medicare Services (CMS) published the Final CLIA Rule. It states that...
- "Beginning April 24, 2003 laboratories introducing nonwaived methods must validate the methods performance."
- If using an FDA approved unmodified method, you must demonstrate that your lab can obtain performance specifications comparable to those established by the manufacturer for:
- Accuracy, precision, reportable range of test results and...
- Verify that the manufacturer's reference intervals (normal reference ranges) are appropriate for the lab's patient population

What are the regulations?

- CLIA regulations are based on the complexity of the test method.
- Test methods are classified into 3 categories:
- 1. Waived tests
- 2. Non-waived unmodified tests moderate and high complexity tests
- 3. Non-waived, modified (or in-house developed) tests.
- Information about classification of specific tests is available at : http://www.cms.gov./clia/

What are the regulations

- Waived Tests: tests that are simple to perform.
 - e.g. urine dipstick testing, urine pregnancy testing, HIV rapid tests, fecal occult blood tests, HemaCue Hgb test etc.
 - Method validation is not required
 - Follow manufacturer's directions for testing.

What are the regulations?

- Non-waived, unmodified tests. (Moderate and High Complexity) e.g. chemistry, hematology etc
- Validation is accomplished by performing 4 experiments:
 - 1. Linearity experiment (reportable range)
 - 2. Replication experiment (estimate imprecision)
 - 3. Comparison of methods (estimate inaccuracy)
 - 4. Establish reference intervals.

What are the regulations?

- Non-waived tests modified or developed inhouse, one must determine the following performance characteristics:
 - Accuracy
 - Precision
 - Reportable range
 - Reference Intervals
 - Analytical sensitivity (detection limit)
 - Analytical specificity (interfering substances)

Accuracy

- A measurement of the exactness of an analytical method, or the closeness of agreement between the measured value and the true value.
- Inaccuracy = systematic error

Inaccuracy = Systematic Error

- Usually quantified by comparing a method to a "gold standard"
- Compare value between the "test method" and the "gold standard" to estimate the SE
- Systematic error may stay the same over a range of values or may change as concentration changes.

Precision

Defined is the degree of agreement among individual test results obtained when the procedure is applied repeatedly to multiple samplings of a homogeneous sample.

Imprecision = Random Error

- Defined as an error that can either be positive or negative, whose direction and exact magnitude cannot be predicted.
 - Usually quantified by the standard deviation (SD).
 - SD usually increases as concentration increases
 - Therefore it is useful to calculate the coefficient of variation (CV%), which expresses the error as a percentage of the mean concentration.

Total Error (TE)

 Defined as the net or combined effect of random and systematic errors:

TE = RE + SE

Total Error

- Regulatory agencies, define acceptable error in terms of "total allowable error" (TE_a)
 - e.g., CLIA:

ALT: target value +/- 20%

Potassium target value +/- 0.5mM/L

Albumin target value +/- 10%

Hemoglobin target value +/- 15%

Magnesium target value +/- 25%

Leukocyte count target value +/- 15%

- Listing of total allowable errors from CLIA:
 - www.westgard.com/clia.htm

Method Validation- Factors to Consider

- Factors to consider:
- Define a quality requirement for the test in the form of the amount of error that is allowable.
- Make a plan and write an outline for each validation experiment.
- Schedule ample time to perform the experiments.
- Familiarize the techs with the validation experiments.
- Make sure the instrument/method is functioning properly. i.e. is passing qc and calibration.
- Enough reagents and supplies in stock.

Method Validation

- Replication Experiment:
- A replication experiment is performed to estimate the imprecision or random error of the analytical method.

Replication Experiment

- Imprecision or random error is caused by:
 - Pipetting of samples
 - Reaction conditions (timing, mixing, temperature, heating,)
 - Measurement itself
 - Operator technique
 - The instability of the instrument

Replication Experiment

- Factors to consider:
 - Time period
 - Within-run/ within day measurements
 - Between-day measurements (over ≥ 20 days).
 - Sample selection
 - Standard solutions
 - Control Solutions
 - Pools of fresh patient samples
 - Number of samples to be analyzed

Replication Experiment – Minimum Studies

- Select at least 2 different control/standard materials or patient specimens that represent low and high medical decision concentrations for the test of interest.
 - Analyze each material 20 times within a run or within a day
 - Short-term imprecision/random error
 - Analyze each material once per day for 20 days
 - Long- term imprecision/random error

Replication Experiment

- For each of the 20 test results obtained from a single source material:
 - Calculate the Mean, SD, and CV%
 - An internet calculator is available at http://www.westgard.com/mvtools.html.

Replication Experiment - Example

-	Ana	lyte: ALB	Method:	Synchron CX-5	Mater	ials: Synchro	n Control Le	vels 1,2,&3
•			Serial No	.: 7244				
•								
•	#	Date	Time	Tech Init.	Control L-1	Control L-2	Control L-3	Comments
•	1	Oct. 25, 04	10:57	HK	2.2	3.5	5.0	
•	2	Oct. 25, 04	16:07	HK	2.2	3.7	5.0	
•	3	Oct. 26, 04	9:00	HK	2.2	3.6	5.0	
•	4	Oct. 26, 04	16:10	HK	2.2	3.6	5.1	
•	5	Oct. 27, 04	11:49	HK	2.2	3.6	5.0	
•	6	Oct. 27, 04	14:33	HK	2.2	3.5	5.0	
•	7	Oct. 28, 04	9:16	HK	2.2	3.6	5.0	
•	8	Oct. 28, 04	13:07	HK	2.2	3.6	5.0	
•	9	Oct. 29, 04	9:27	HK	2.2	3.6	5.0	
•	10	Oct. 29, 04	15:11	HK	2.2	3.5	4.9	
	11	Nov.1, 04	12:34	HK	2.2	3.6	4.9	
	12	Nov.1, 04	14:29	HK	2.1	3.6	5.0	
	13	Nov.2, 04	8:43	HK	2.1	3.5	5.0	
	14	Nov.2, 04	14:49	HK	2.1	3.5	4.9	
	15	Nov.3, 04	9:26	HK	2.2	3.6	5.0	
	16	Nov.3, 04	16:37	HK	2.2	3.6	5.1	
	17	Nov.4, 04	7:36	HK	2.2	3.6	5.1	
	18	Nov.4, 04	16:04	HK	2.2	3.6	5.1	
	19	Nov.5, 04	9:37	HK	2.2	3.6	5.0	
	20	Nov.5, 04	13:22	HK	2.2	3.6	5.1	
		7107.0, 01	10.22					
				Mean	2.2	3.6	5.0	Synchron CX Performance
				SD	0.0	0.1	0.1	SD = 0.3
•				CV	0.0	2.8	2.0	CV = 4.5

Replication Experiment

- The CLIA criteria for acceptable performance states:
 - Short term = "within-run" or "within-day" experiment.
 - SD < 0.25 TEa
 - Long- term = "between-day" experiment
 - □ SD < 0.33 TEa

Method Validation

- Validation of Reportable Range or Linearity
- It is essential to assess the analytical range of a method, i.e., the lowest and highest test results that are reliable and can be reported.
- It is important to validate the manufacturer's claims for reportable range of their system/method.

Reportable Range

- Factors to consider:
 - Sample selection
 - Standard solutions
 - Dilutions of a concentrated specimen
 - Proficiency Testing specimens for linearity
 - Use preferably 5 different levels of concentrations
 - May require more than 5 levels to determine where linearity "falls out"

Reportable Range Experiment

- Step 1: Prepare samples
 - Commercial samples or patient samples.
 - Choose at least 5 different concentrations
 - One near the zero level or estimated lower level of detection limit, and one slightly above the upper limit of the manufacturer's reportable range.

Reportable Range

- Step 2: Perform measurements
- NCCLS 4 measurements on each specimen.
- Westgard 3 measurements are sufficient.
- Calculate the mean of the measurements for each concentration level.

Reportable Range

- Step 3: Plot data
- Measured mean values on y axis vs the known or assigned values on the x axis.
- Manually draw the best straight line through data points. (Do not use the computer)
 - Give more weight to the lowest points in the series.
- Inspect for linearity
- Make visual decision as to the acceptable reportable range.

Reportable Range – Example

Analyte: Na CX-5 Analytical Range: 100-200 mmol/L

Lab Analytical Range: 100**- 200 mmol/L**

-	Sample	Theoretical	Measured Value
-	Level	Value (x)	Average (y)
•	M100 L-0/5	100	103.1
•	M100 L-1	120	122.1
-	M100 L-2	140	142
-	M100 L-3	160	164.1
_	M100 L-4	180	184.9
_	M100 L-5	200	205.6

Linearity Plot – Example 1

Method Validation

- Comparison of Methods:
- Performed to estimate inaccuracy or systematic error of the new method.
- Experiment is performed by analyzing patient samples by the new method (test method) and a comparative method, then estimate the systematic errors on the basis of the differences observed between the methods.

Comparison of Methods

- Comparative method:
 - Must be carefully selected, assumed to yield the correct results.
 - Any differences between a test method and a comparative method are assigned to the test method, because the correctness of the comparative method is well documented

Comparison of Methods-Measuring Inaccuracy

- Factors to consider:
 - Comparative method
 - Ideal = reference method
 - # of specimens to test
 - At least 40 patient samples
 - Cover the entire reportable range
 - One third in the low abnormal range, one third in the normal range and one third in the high abnormal range.
 - Use controls, standards or CAP survey material for spiking.

Comparison of Methods-Measuring Inaccuracy

- Single vs duplicate measurements
 - Sufficient Volume of specimen
- –Time period
 - Test specimens on different days
 - Minimum 5 days, could extend to 20 days
 - Test the specimens on both methods simultaneously or within 2 hours of each other.

Comparison of Methods — Data Analysis

1. Graph the data:

- Difference plot
 - Difference between the test results minus comparative results on y axis vs. comparative results on the x axis
 - Differences should scatter around the zero line.
 - Look for outliers and repeat the measurement.

Comparison plot

- Plot the test values on the y axis vs the comparison values on the x axis.
- Inspect for outliers and repeat.

Difference Plot - Example

Comparative Method

Comparative Plot - Example

Comparison of Methods — Data Analysis

- 2. Calculate statistics:
- Different statistical tools are available for calculating the systematic error or bias.
- Linear regression analysis
- Paired t-test
- Bland Altman analysis
- Deming's regression
- Passing-Blalock regression
- Correlation Coefficient r

Comparison of Methods - Statistics

- If you select to use linear regression statistics, you must evaluate the correlation coefficient (r):
- Correlation coefficient estimates the degree of association between two variables.
- If r> 0.99, use linear regression statistics
- If r < 0.99, use the paired t-test or another method.

Comparison of Methods

- Criteria for acceptable performance:
 - Must combine calculated random error (from the replication experiment) with the systematic error (from the comparison of methods experiment) to calculate TOTAL ERROR
 - TEcalc = SE + RE
 - TEcalc = bias + 3SD
 - TEcalc < TEa</p>
 - Method performance is judged acceptable when the observed error (TEcalc is smaller than the defined allowable error (TEa)

Comparison of Methods

- USE A PROGRAM for statistical analysis!!!
- Westgard has a set of statistical tools on the internet to help calculate the statistics:
 - www.westgard.com/mvtools.html.
- Get a statistician from your data department to assist you.

Method Validation

- Reference Intervals or Normal Reference Range:
 - Verification of the manufacturer-supplied reference intervals for the population being served by the laboratory must be assessed.
 - It should be the last experiment to be studied in the method validation process.

- Several different ways to validate the transfer of the manufacturer's reference intervals to your individual lab.
- "divine judgement"
- Verification with 20 samples
- Estimation with 60 samples
- Full reference interval study

Divine judgement

- If there is consistency in demographics of the manufacturer's study population and the population served by the local lab, then the manuf. reference intervals may be subjectively transferred to your lab.
- Decision should be made by Lab Medical Director or equivalent.

- Verification with 20 samples
- To transfer the manufacturer's reference intervals to your lab:
- Test 20 samples from healthy individuals representing your local population.
- If < 3 values fall outside the manuf. reference interval, you may consider the reference interval verified.

- Estimation with 60 Samples:
- Collect and analyze samples from 60 healthy individuals from your local population.
- Estimate the reference intervals from the 60 samples and compare it with the reported manufacturer's intervals.

- Full Reference Interval Study
- Recommended when the demographics of the populations are different.
- Minimum requirement = 120 individuals from each group i.e. 120 men and 120 women.

- Client/Participant requirement:
- Selection accomplished by administering a health questionnaire.
- A consent form should signed by the participant, after counseling.
- If possible perform a physical examination.
- Screen individual for HIV.

- If HIV negative, draw blood for chemistry, hematology, CD4/CD8, and coagulation, HBsAg and HCV screening, etc.
- Perform the testing.
- Examine the data, exclude the outliers and HBsAg and HCV positive individuals.
- Perform statistical analysis on test results.
- Your new reference interval includes 95%
 (CI) of all your values i.e. Mean +/- 2SD.

Reference Intervals – UNC Project

- Total clients screened = 331
- HIV Positive Clients = 51
- Total enrolled as of Feb.9,2005 = 280
- Total tested for HBsAg = 234
- Total HBsAg Positive = 15 (6.4%)
- Total tested for HCV = 90
- Total HCV positive = 5 or (5.6%)

Method Validation- Additional Experiments

- Interference Experiment
- Detection Limit Experiment
- These are required for the modified nonwaived tests.

Interference Experiment – Analytical Specificity

- Interference Experiment
 - Estimates systematic error caused by other materials that may be present in the specimen being analyzed.
 - e.g. lipemia, bilirubin, hemolysis etc
 - Compare the results between the neat specimen and the specimen with the added substance.

Detection Limit — Analytical Sensitivity

- Detection Limit Experiment
- Estimates the lowest concentration of an analyte that can be measured.
- Experiment performed by preparing a
- "blank" sample that has zero conc. of analyte
- "spiked" samples of low concentrations of analyte.
- Samples are measured repeatedly (replication), then the Means and SDs are calculated from the values obtained.

Method Validation -Summary

- Validation = estimating error
 Total error = systematic error + random error
- Essential components of MV:
 - Estimating imprecision (random error)
 - Estimating inaccuracy (systematic error)
 - Verifying reportable range (linearity)
 - Verifying reference intervals (normal reference range)

- For tests modified or developed in-house, one must also quantify:
- Analytical sensitivity (limit of detection)
- Analytical specificity (interfering substance)

- Statistical Analysis
- Use available statistical tools.
- www.westgard.com/medxcel.htm
- www.westgard.com/mvtools.html

- 6 major points of MV:
 - Define quality requirement for your lab.
 - Select appropriate experiments
 - Collect experimental data
 - Perform statistics
 - Compare observed error with pre-determined allowable error (total allowable error)
 - Judge acceptability of observed method performance

- Make sure your experimental data is reviewed and signed by a lab supervisor or lab manager.
- Your data is filed neatly in a binder and is readily accessible to the monitors when they ask for it!

